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Figure 1: Virtual characters controlled by the BVP Planner in a virtual environment.

Abstract

Many games are populated by synthetic humanoid actors that act
as autonomous agents. The animation of humanoids in real-time
applications is yet a challenge if the problem involves attaining a
precise location in a virtual world (path-planning), and moving re-
alistically according to its own personality, intentions and mood
(motion planning). In this paper we present a strategy to imple-
ment – using CUDA on GPU – a path planner that produces natural
steering behaviors for virtual humans using a numerical solution
for boundary value problems. The planner is based on the poten-
tial field formalism that allows synthetic actors to move negotiat-
ing space, avoiding collisions, and attaining goals, while producing
very individual paths. The individuality of each character can be set
by changing its inner field parameters leading to a broad range of
possible behaviors without jeopardizing its performance. With our
GPU-based strategy we achieve a speed up to 56 times the previous
implementation, allowing its use in situations with a large number
of autonomous characters, which is commonly found in games.
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1 Introduction

Many types of games, specifically First Person Shooters (FPS) and
Real Time Strategy (RTS) are populated by synthetic actors that
should act as autonomous agents. Autonomous agents, also called
non-player characters, are characters with the ability of playing
a role into the environment with life-like and improvisational be-
havior. To behave in such way, the agents must act in the virtual
world, perceive, react and remember their perceptions about this
world, think about the effects of possible actions and finally, learn
from their experience [Funge 2004]. In this complex and suitable
context, navigation plays an important role [Nieuwenhuisen et al.
2007]. To move agents in a synthetic world, a semantic represen-
tation of the environment is needed, as well as the definition of the
agent initial and target position (goal). Once these parameters were
set, any path-planning algorithm can be used to find a trajectory to
be followed.

However, in the real world, if we consider different persons (all
in the same initial position) looking for achieving the same target
position, each path followed will be unique. Even for the same
task, the strategy used for each person to reach his/her goal depends
on his/her physical constitution, personality, mood, reasoning, ur-
gency, and so on. From this point of view, a high quality algorithm

to move characters across virtual environments should generate ex-
pressive, natural and unexpected steering behaviors.

In contrast, the high performance required for real-time graphics
applications compels developers to look for most efficient and less
expensive methods that produce yet good and almost natural move-
ments. To illustrate how performance is a crucial problem, it is
known that to be playable, a game must run at least at a rate of
30-100 frames per second. This implies in 0.02 seconds per frame.
Each frame (or step of an animation) includes the updating of the
game status, handling user inputs, graphics processing, physics
computations, strategic AI, path-planning, among others. Then, we
can easily consider something as one millisecond per step for path-
planning (with multi-core architectures, this restriction is relaxed).

Many researchers are working on methods to improve the quality
of the steering behavior of synthetic agents with a minimal cost.
One way to improve the performance is taking advantage of mas-
sively parallel architectures, as multi-core CPUs and GPUs (Graph-
ics Processing Unit). In this work we propose a GPU implemen-
tation of the BVP Planner recently proposed by us [Dapper et al.
2007]. The BVP Planner is a method based on the numeric solution
of the boundary value problem (BVP) to control the movement of
pedestrians allowing the individuality of each agent.

Our main contributions in this paper are:

• A parallel version of our previously technique [Dapper et al.
2007], implemented on the GPU using nVIDIA CUDA (Com-
pute Unified Device Architecture) [NVIDIA. 2009]

• A strategy to reduce the number of memory transactions be-
tween CPU and GPU

• Several tests showing that the GPU implementation improves
up to 56 times the CPU sequential version, allowing the real-
time use of this technique even in scenarios with a large num-
ber of autonomous characters

Despite humanoid, autonomous agent, and behavior are terms used
in many different contexts, in this paper we limit its use in order to
match our goals. For the sake of simplicity, we consider humanoids
as a kind of embodied autonomous agent with reactive behaviors
(driven by stimulus), represented by a computational model, and
capable of producing physical manifestations in a virtual world.
The term behavior will be used mainly as a synonymous of ani-
mation or steering behavior and intend to refer the improvisational
and personalized action of a humanoid.

The remaining of this paper is structured as follows. Section 2 re-
views some related works on path-planning techniques applied to
virtual agents simulation. Section 3 describes the fundamentals of
the path-planning method proposed by us. In Section 4 we detail
the strategy used to handle the information about the environment
and other agents. In Section 5 we present our strategy to implement



this technique on GPU. Section 6 shows our results, including sev-
eral comparisons between the CPU and GPU version, and exposes
considerations about performance. Finally, Section 7 presents our
conclusions and some ideas for future works.

2 Related Work

The path-planning problem has been deeply explored in game de-
velopment. The generation of a path between two known con-
figurations in a bi-dimensional world is a well-known problem in
robotics, artificial intelligence, and computer graphics field. How-
ever, to find the path is not enough when we want to endow artificial
characters with natural and realistic movement similar to the ones
found and followed by real human beings. When it comes to a
game with many autonomous characters, for instance, these char-
acters must also present convincing behavior. It is very difficult to
produce natural behavior by using a strategy focusing on the global
control of characters. On the other hand, taking into account the in-
dividuality of each character can be a costly task. As a consequence,
most of the approaches proposed in computer graphics literature do
not take into account the individual behavior of each agent.

An example is the technique proposed by Kuffner [James J. Kuffner
1998]. Kuffner proposed a technique where the scenario is mapped
onto a 2D mesh and the path is computed using a dynamic pro-
gramming technique like Dijkstra. Then, the motion controller is
used to animate the agent along the path planned. Kuffner argue
that his technique is fast enough to be used in dynamic environ-
ments. Another example is the work developed by Metoyer and
Hodgings [Metoyer and Hodgins 2004]. They proposed a tech-
nique where the user defines the path that should be followed by
each agent. During the motion along this path, it is smoothed and
slightly changed to avoid collisions using force fields that act on the
agent.

The development of randomized path-finding algorithms – spe-
cially the PRM (Probabilistic Roadmaps) [Kavraki et al. 1996] and
RTT (Rapidly-exploring Random Tree) [LaValle 1998] – allowed
the use of large and more complex configuration spaces to generate
paths efficiently. Thus, the challenge becomes more the generation
of realistic movements than finding a valid path. For instance, Choi
et al. [Choi et al. 2003] use a library of captured movements asso-
ciated to the PRM to generate realistic movements in a static envi-
ronment, that is, live-captured motions are used insofar the agent
tracks the path computed from a roadmap. Despite the fact the path
is computed in a pre-processing phase, results are very realistic.
Pettré et al. [Pettre et al. 2002] improved this idea adding one more
step in this process. This step consists of smoothing the path com-
puted by the PRM using Bézier curves. Hereinafter, the already
captured motions are associated to the agent position during the
path execution. As in previous works, the motion is also performed
on a 2D environment.

Differently, Burgess and Darken [Burgess and Darken 2004] pro-
posed a method based on the principle of least action which de-
scribes the tendency of elements in nature to seek the minimal ef-
fort solution. Authors claim that a realistic path for a human is the
one that requires the smallest amount of effort. The method pro-
duces human-like movements, through very realistic paths, using
properties of fluid simulation.

Tecchia et al. [Tecchia et al. 2001] proposed a platform that aims
to accelerate the development of behaviors for agents through local
rules that control these behaviors. These rules are governed by four
different control levels, where each one reflects a different aspect
of the behavior of the agent. Results show that, for a fairly simple
behavioral model, the system performance can achieve interactive
time.

Pelechano et al. [Pelechano et al. 2005] described a new architec-
ture to integrate a psychological model into a crowd simulation sys-
tem in order to obtain believable emergent behaviors. The architec-
ture achieves individualistic behaviors through the modeling of the
agent knowledge, as well as the basic principles of communication
between agents.

Treuille et al. [Treuille et al. 2006] proposed a crowd simulator

driven by dynamic potential fields which integrates both global nav-
igation and local collision avoidance. Basically, this technique uses
the crowd as a density field, and, for each group, constructs a unit
cost field which is used to control people displacement. The method
produces smooth behavior for a large amount of agents at interac-
tive rates.

Recently, Reynolds [Reynolds 2006] implemented a high perfor-
mance multi-agent simulation and animation for the Playstation R©

3. Basically, his technique uses a spatial partitioning that divides
the simulation into disjoint jobs which are evaluated in an arbitrary
order on any number of Playstation R© 3 Synergistic Processor Units
(SPUs). A fine-grain partitioning suits SPU memory size and pro-
vides automatic load balancing. This approach allows a scalable
multi-processor implementation of a large and fast crowd simula-
tion, achieving good frame rates with thousand of agents.

In 2008, Bleiweiss [Bleiweiss 2008] implemented the Dijkstra and
the A* algorithms using CUDA. Differently from our work, these
algorithms are used in the path finding problem with pre-computed
graphs. After several benchmarks, he observed that the Dijkstra
implementation reached a speed up of 27 times compared to a C++
implementation without SSE instructions. The A* implementation
reached a speed up of 24 times compared to the C++ implementa-
tion with SSE instructions.

Based on local control, van den Berg [van den Berg et al. 2008]
proposed a technique that handles the navigation of multiple agents
in the presence of dynamic obstacles. He uses an extended velocity
obstacles concept to locally control the agents with few oscillation.
Kapadia [Kapadia et al. 2009] presented a framework that enables
agents to navigate in unknown environments based on affordance
fields that compute all the possible ways an agent can interact with
its environment.

As mentioned above, most of the approaches do not take into ac-
count the individual behavior of each agent, his internal state or
mood. Our assumption is that realistic paths derive from human
personal characteristics and internal state, thus varying from one
person to another. As a consequence, we [Dapper et al. 2006; Dap-
per et al. 2007] recently proposed a technique that generate individ-
ual paths. Our path is smooth and is dynamically generated while
the agent walks. In the following sections, we will explain the con-
cepts of our technique and our strategy to implement it on the GPU.

3 Path Planner based on Boundary Value
Problems

Recently, we [Dapper et al. 2006; Dapper et al. 2007] developed
a technique that produces natural and individual behaviors for vir-
tual humanoids. This technique is based on an extension of the
Laplace’s Equation that produces a family of potential field func-
tions that do not have local minima. This family is generated
through the numeric solution of a convenient partial differential
equation with Dirichlet boundary conditions, i.e., a boundary value
problem (BVP). Boundary conditions are central to the method in-
dicating which regions in the environment are obstacles and which
ones are targets. Our method uses the following equation

∇2 p(r) + εv.∇p(r) = 0 (1)

where v is a bias unity vector and ε is a scalar value.

The use of terms ε and v distort the potential field providing a pre-
ferred direction to be followed. This distortion allows the produc-
tion of individual behaviors for humanoids illustrated through the
path followed by each one during navigation tasks.

To generate realistic steering behaviors, we need to conveniently
adjust both parameters ε and v. The vector v, called behavior vec-
tor, can be thought as an external force that pulls the agent to its
direction always as possible whereas the parameter ε can be under-
stood as the strength or influence of this vector in the agent behav-
ior. The allowed values of parameters ε and v permit to generate an
expressive amount of action sequences – displacement sequences –
that virtual humanoids can use to reach a specific target position.



Figure 2 shows three different paths followed by an agent using the
Equation 1 and changing the parameters ε and v.

(a) (b) (c)

Figure 2: Different paths followed by an agent using Equation 1:
(a) path produced by harmonic potential, i.e., with ε = 0; (b)
with ε = −1.0 and v = (1, 0); (c) with ε = −1.0 and v =
(1, sin(0.6t))

.

Two action sequences are not statically defined for a same pair ε and
v, i.e., the path generated vary according to the information gath-
ered by the agent to allow it to dynamically react against unexpected
events (e.g. dynamic obstacles). In other words, the configuration
of the obstacles has an important role in the generation of the path.

Besides, this pair is not constrained to keep constant during the ex-
ecution of tasks. They can vary insofar the agent displaces in the
environment to obtain the desired behavior. Figure 2(c) shows a sit-
uation where the behavior vector varies according to a sin function.
It is not natural for human beings to walk based on a sin function.
However, the path based on a sin function illustrates the flexibility
of Equation 1. Any function can be associated to v and ε to generate
a behavior.

When ε = 0, Equation 1 reduces to ∇2 p(r) = 0 which cor-
responds to Laplace’s Equation. This equation is used as core of
the path planner based on harmonic function developed by Con-
nolly and Grupen [Connolly and Grupen 1993] on Robotics con-
text. This planner produces paths that minimize the hitting proba-
bility of the agent with obstacles, i.e., in an indoor environment the
agent will tend to follows a path equidistant to the walls, as shown
in Figure 2(a). This behavior is not always adequate to simulate
humanoid motion since it looks very stereotyped because humans
do not always walk equidistant to the walls. Hence the importance
of using these parameters ε and v.

The common approach to numerically solve a BVP is to consider
that the solution space is discretized in a regular grid. Each cell
(i, j) is associated to a squared region of the real environment and
stores a potential value pt

i,j at instant t. Each cell is distant from
each other 1 unit. The Dirichlet boundary conditions previously as-
sociate a specific potential value to some cells, before the relaxation
process is performed. That is, cells associated to obstacles in the
real environment store a potential value equal to 1 (high potential)
whereas cells containing the target store a potential value equal to
0 (low potential). The high potential value prevents the agent from
running into obstacles whereas the low potential value generates
an attraction basin that pulls the agent. The potentials of the other
cells are computed using the Gauss-Seidel relaxation method, as
discussed in [Prestes et al. 2002]. By considering the Equation 1,
the potentials of the free space cells are updated through the follow-
ing equation

pc =
pb + pt + pr + pl

4
+
ε((pr − pl)vx + (pb − pt)vy)

8
(2)

where pc = pt+1
i,j , pb = pt

i,j+1, pt = pt+1
i,j−1, pr = pt

i+1,j , pl =

pt+1
i−1,j and v = (vx, vy). Figure 3 shows a representation of these

cells.

Figure 3: Representation of pc, pb, pt, pr and pl on the grid.

The parameter v must be a unit vector and ε must be in the interval
(−2, 2). Values out of this range generate oscillatory and unstable
paths that do not guarantee that the agent will reach the target or will
avoid obstacles. This happens because the boundary conditions –
that assert the agent is repelled by obstacles and attracted by targets
– are violated.

After the potential computation, the agent moves following the di-
rection of the gradient descent of this potential at its current position
(i, j),

(∇p)(i,j) =
(
pi+1,j − pi−1,j

2
,
pi,j+1 − pi,j−1

2

)
This process is an intuitive way to control the agent motion. How-
ever, it can easily fail in producing realistic steering behaviors, as
observed in real world. One of the reasons is that the agent changes
its direction based solely on the gradient descent of its position. For
instance, if the field of view of the agent is small, its reaction time
will be very short to treat dynamic obstacles1. Then, these obstacles
will produce a strong repel force that will change the agent direc-
tion abruptly. As we can see in Figure 4, if the agent uses only the
gradient descent (dgrad) it will change its direction in nearly π/2.

We handle this problem by adjusting the current agent position by

∆ d = υ(cos(ϕt), sin(ϕt)) (3)

where υ defines the maximum agent speed and ϕt is

ϕt = η ϕt−1 + (1− η) ζt (4)

where η ∈ [0, 1) and ζ is the orientation of the gradient descent at
current agent position.

When η = 0, the agent adjusts its orientation using only informa-
tion about the gradient descent. If η = 0.5, the previous agent di-
rection (ϕt−1) and the gradient descent direction influence equally
the computation of the new agent direction. Figure 4(b) shows the
vector dt with orientation ϕt computed with η = 0.5. The parame-
ter η can be viewed as an inertial factor that tends to keep the agent
direction constant insofar η → 1. When η → 1, the agent reacts
slowly to unexpected events, increasing its hitting probability with
obstacles. η is a flexible parameter that the user is able to control.
However, a learning strategy could be used to specify what is the
best η to a specific situation.

Despite Equation 3 produces good results and smooth paths in en-
vironments with few obstacles, when the environment is cluttered
with obstacles, the agent behavior is not realistic and collisions can
happen. To solve this problem, a speed control was incorporated
into this equation,

∆ d = υ (cos(ϕt), sin(ϕt)) Ψ(|ϕt−1 − ζt|) (5)

1We consider that dynamic obstacles (as other agents) are mapped in the
environment only when they are inside the field of view of the agent, which
almost corresponds to reality.



(a)

(b)

Figure 4: Defining agent motion. (a) Situation before the agent A2

enters in the field of view of A1. (b) If the agent A1 follows the
direction defined by the gradient descent (dgrad), it will changes
its direction in nearly π/2, what is undesirable. However, if the
agent uses the vector d, it will achieve a smooth curve, what is
more natural and realistic.

where function Ψ : R→ R is

Ψ(x) =

{
0 if x > π/2
cos(x) , otherwise .

If |ϕt−1− ζt| is higher than π/2, then there is a high hitting proba-
bility and this function returns the value 0, making the agent stops.
Otherwise, the agent speed will change proportionally to the col-
lision risk. In regions cluttered with obstacles, agents will tend to
move slowly. If a given agent is about to cross the path of another,
one of them will stop and wait until the other get through. Further-
more, speed control allows the simulation of agents’ mood through
the variation of the speed magnitude, that is, it is possible to simu-
late a tired agent making it move slower and an agent that is anxious
about its work making it move faster.

4 Implementation Strategy

As previously explained, our motion planning method requires the
discretization of the environment into a regular grid. In this section
we present the strategy that was used in our previous work [Dapper
et al. 2006; Dapper et al. 2007] to implement it by using global
environment maps (one for each target) and local maps (one for
each agent), as well as the mechanisms used to control each agent
steering behavior.

4.1 Environment Global Map

The entire environment is represented by a set of homogeneous
meshes, {Mk}, in which each meshMk has Lx × Ly cells, de-
noted by {Ck

i,j}. Each cell Ck
i,j corresponds to a squared region

centered in environment coordinates r = (ri, rj) and stores a par-
ticular potential value Pk

i,j . The potential associated to the mesh
Mk is computed by the harmonic path planner, through the Equa-
tion 2, and then used by agents to reach the target Ok.

In order to delimit the navigation space, we consider that the en-
vironment is surrounded by static obstacles. Global maps are built
before simulation starts, in a pre-processing phase.

4.2 Agent Local Map

Each agent ak has one map mk that stores the current local infor-
mation about the environment obtained by its own sensors. This
map is centered in the current agent position and represents a small
fraction of the global map, usually about 10% of the total area cov-
ered by the global map.

The map mk has lkx × lky cells, denoted by {cki,j} and divided in
three regions: the update zone (u-zone); the free zone (f-zone) and
the border zone (b-zone), as shown in Figure 5. Each cell corre-
sponds to a squared region centered in environment coordinates
r = (ri, rj) and stores a particular potential value pk

i,j .

Figure 5: Agent Local Map. The update (u-zone), free (f-zone) and
border zones (b-zone) are shown. Blue and red cells correspond to
the intermediate goal and obstacles, respectively.

The area associated to each agent map cell is smaller than the area
associated to the global map cell. The main reason is that the agent
map is used to produce refined motion, while the global map is used
only to assist the long-term agent navigation. Hence, the smaller the
size of the cell on the local map, the better the quality of motion.

4.3 Updating Local Maps from Global Maps

For each agent ak, a goal Ogoal(k)
2, a particular vector vk that

controls its behavior, and a εk should be stated. The same goal, v,
and ε can be designated to several agents. If vk or εk is dynamic,
then the function that controls it must also be specified.

To navigate into the environment, an agent ak uses its sensors to
perceive the world and to update its local map with information
about obstacles and other agents. The agent sensor sets a view cone
with aperture α.

Figure 6 exemplifies a particular instance of the agent local map
where we can see the obstacles mapped from the global map. The
u-zone cells cki,j which are inside the view cone and correspond
to obstacles or other agents have their potential value set to 1. In
Figure 7, as there is an agent in the u-zone of the agent local map,
inside of his view cone, it is mapped as an obstacle into his local
map. This procedure assures that dynamic or static obstacles behind
the agent (out of his view cone) do not interfere in his future motion.

For each agent ak, the global descent gradient on the cell in the
global map Mgoal(k) that contains his current position is calcu-
lated. The gradient direction is used to generate an intermediate
goal in the border of the local map, setting the potential values of a
couple of b-zone cells to 0, while the other b-zone cells are consid-
ered as obstacles, with their potential values set to 1. In Figure 7,
the agent calculates his global gradient in order to project an in-
termediate goal in its own local map. As the agent local map is
delimited by obstacles, the agent is pulled towards the intermediate
goal using the direction of his local gradient. The intermediate goal
helps the agent ak to reach its target Ogoal(k) while allowing it to
produce a particular motion.

2Function goal() maps the agent number k into its current target number



Figure 6: Global map mapped onto the agent local map.

Figure 7: The cells which are inside the agent’s view cone and
correspond to obstacles or other agents have their potential value
set to 1.

In some cases, the target Ogoal(k) is inside both view cone and u-
zone, and consequently local map cells associated are set to 0. The
intermediate goal is always projected, even if the target is mapped
onto the u-zone. Otherwise the agent can easily get trapped be-
cause it would be taking into consideration only the local informa-
tion about the environment, in a same way as traditional potential
fields [Khatib 1980].

F-zone cells are always considered free of obstacles, even when
there are obstacles inside. The absence of this zone may close the
connection between the current agent cell and the intermediate goal
due to the mapping of obstacles in front of the intermediate goal.
When this occurs, the agent gets lost because there is no informa-
tion coming from the intermediate goal to produce a path to reach
it. F-zone cells handle the situation always allowing the propaga-
tion of the goal’s information to the cells associated to the agent
position.

After the sensing and mapping steps, the agent k updates the poten-
tial value of its map cells using Equation 2 with its pair vk and εk.
Hereinafter, it updates its position according to Equation 5 using
the gradient descent computed from the potential field stored on its
local map in the position px = dlkx/2e and py = dlky/2e.

5 Implementation on GPU

In the real world, people walking inside a room react to what
they perceive from the environment based on their own personal-
ity, mood and reasoning, i.e., they think in parallel. So, a technique
that handles several agents should be parallelized in the same way.

According to Section 3, during the update phase of our technique,
each agent must update its local map with the environment obsta-
cles which are inside this region. Note that, in this step, we consider
that for a given agent ai, each other agent aj , i 6= j, is also an ob-
stacle. Then, each cell in the agent local map inside his view cone
is updated as an obstacle, with the potential value equal to 1. After
the update of these cells, we update the cells which correspond to
the agent goal, with the potential value of 0.

Note that each one of these updates can be made in parallel between
the agents. The only dependency here is that obstacle cells must be
updated before goal cells. It must be done sequentially, otherwise,
if an agent has a goal very close to an obstacle, both obstacle and
goal may be mapped to the same cell. In this case, if goal cells are
updated before obstacle cells, the agent will become lost, without a
goal to achieve. All other cells are updated as free cells.

Afterwards, the Equation 2 is evaluated for each agent local map.
Since it is difficult and needs to be evaluated independently for each
agent, it is a good candidate for a parallel implementation. The
Gauss-Seidel relaxation method (previously used in Equation 2) is
not suitable for a parallel implementation because it uses values
from the current and previous iterations. In a sequential approach,
it is very simple to implement and fast to execute, but a parallel im-
plementation will require some kind of synchronization, which may
cause degradation in performance. A better approach for a parallel
implementation is to use values only from the previous iteration.
This is exactly what the Jacobi method does. The update rule is
described below.

pc =
pb + pt + pr + pl

4
+
ε((pr − pl)vx + (pb − pt)vy)

8
(6)

where pc = pt
i,j , pb = pt

i,j+1, pt = pt
i,j−1, pr = pt

i+1,j , pl =

pt
i−1,j and v = (vx, vy).

We implemented the parallel version of our technique using the
nVIDIA R© Cuda [NVIDIA. 2009] language, which allows us to use
the graphics processor without using shading languages. In the con-
text of CUDA, the CPU, here called Host, controls the graphics
processor, called Device. It sends data, calls the Device to execute
some functions, and then copies back its results.

Each graphics processor of a nVIDIA graphics card is divided into
several multiprocessors. Cuda divides the processing in blocks,
where each block is divided in several threads. Each block of
threads is mapped to one multiprocessor of the graphics processor.
When the Host calls the Device to execute a function, it needs to
inform how the work will be divided in blocks and threads. Maxi-
mum performance is achieved when we maximize the use of blocks
and threads for a given graphics processor.

Each of the multiprocessors is a group of simple processors that
share a set of registers and some memory (the shared memory
space). The shared memory size is very small (16KB on graphics
cards up to Compute Capability 1.3), but it is as fast as the reg-
isters. The communication between two multiprocessors must be
done through the Device Memory, which is very slow if compared
to the shared memory. There is also the Constant Cache and Tex-
ture Cache memory, which has better access times than the Device
memory, but it is read-only for the Device.

Before the execution of the code in the Device, the Host must send
the data to its Device Memory to be processed later. The mem-
ory copy from the Host Memory to the Device memory is a slow
process, and should be minimized. Besides, the nVIDIA Cuda Pro-
gramming Guide [NVIDIA. 2009] says that one single call to the
memory copy function with a lot of data is much more efficient
than several calls to the same function with a few bytes. We can
improve the performance of our application making good use of
these restrictions of Cuda.

As previously mentioned, each agent ak has several attributes: the
scalar εk, the vector vk, and its current objective Ogoal(k). The lo-
cal map also has some attributes, like its width lkx and height lky . All
these attributes must be sent at least once to the Device. The agent
goal and the local map position in the world, for instance, will be
frequently updated. To avoid several memory transactions between
the Host and the Device, we store all these attributes in contiguous
memory areas, and treat it like an array. At the position k we store
an attribute of the agent ak. Proceeding this way, we avoid several
unnecessary copies, improving the overall performance.

Figure 8 shows our data structure for a set of 3 agents. The array
m with all local map cells is illustrated with its cell’s index. Each
position k of the array s contains an index to the first position in
the array m in which the agent ak local map information is stored.
Each position k of the array l,O, ε, v contains the information of the



local map dimension and goal, as well as the behavioral parameters
ε and v of the agent ak, respectively.

Figure 8: Data structure used on GPU.

There are situations in which the size of the agent local map must be
changed. Any update on the size of an agent local map will require
the modification of the array m, which implies in the entire data
structure reconstruction. In these cases, the Host must reallocate
the entire array in the Host Memory, and send it again to the Device
Memory. These attributes should not only be copied once to the
Device memory, but they should be sent to the Constant Memory or
Texture Memory.

As the Environment Global Map is composed only of static obsta-
cles, it can be copied to the Device Memory only once. Then, the
update step can be done in the following way. First, each local map
is mapped into a block of threads, in which each thread updates
one cell of the local map. The thread will find the local map cell
corresponding to the Environment Global Map, and will copy the
information from the global map cell to the local map cell. This is
done only to the cells in the f-zone. Figure 6 illustrates this situa-
tion.

Afterwards, each local map is mapped to a block of threads, and
each thread is associated with a dynamic obstacle. This thread
checks whether the obstacle appears inside the view cone. If yes,
the local map cells occupied by the obstacle update its potential
value to 1. Next, each cell in the b-zone is mapped as an obsta-
cle, also updating its potential to 1, except for the ones that are goal
cells. The remaining cells are updated as free cells. Then, the Equa-
tion 6 can be evaluated, starting one thread to each local map cell.
A synchronization must be made between the iterations in order to
guarantee that all cells are up to date to the next iteration.

The convergence of the Equation 6 is achieved through several
reads and writes at the Device Memory during several iterations.
In order to avoid the high latency of the Device Memory, this must
be made in the shared memory of the multiprocessor. An imple-
mentation of the Jacobi method will require two copies of the po-
tential map, where at each iteration the values are read from one
of them and written to the other. However, the shared memory size
is very limited. Then, we decided to use a combination of the Ja-
cobi method with the Gauss-Seidel. In our implementation, only
one copy of the potential map is stored in the shared memory. At
each iteration t, a cell cki,j may be updated with the potential of the
neighborhood cells at the iteration t − 1 or t. We do not specify
whether will be used values from iteration t − 1 or t. It will de-
pend on how the information will be arranged in the shaders, i.e.,
the synchronization between cells update is not needed.

6 Results

In order to verify that our parallel implementation can be executed
faster than the sequential one, a couple of tests were accomplished.
All the tests were executed in an Intel R© Core 2 6300 1.86GHz,
with 2Gb of RAM memory, a nVIDIA GeForce 9800 GX2 graphics
card (the graphics processor has 600 MHz of clock) and Microsoft
Windows XP SP3 operating system. We measured how many times
per second the algorithm can be executed, and what is the impact
of the memory copy between the Host and the Device, using three
different sizes for the local maps.

The tests were executed in the following way. Initially, three sizes
of local maps where chosen: 11×11, 16×16 and 21×21. We chose
these sizes because previous tests [Dapper et al. 2006] showed that
they generate animations with very good quality, being the most
interesting for tests. Then, several scenarios were executed using
the parallel and sequential versions of the algorithm, changing the
number of agents in the scene. For each test, we recorded the fre-
quency at which the algorithm can be executed, and the percentage
of time spent in memory copies between the Host and the Device.

Figure 9: Speed up achieved using the parallel implementation
over the sequential version, with three different sizes of local maps.

The graphic in Figure 9 shows the speed up achieved using the par-
allel implementation over the sequential version of the technique.
As we can see, in all tests executed the parallel version was above
twice faster than the sequential one (exactly the lowest point in the
graphic is at 2.85 times). Besides that, the highest point in the
graphic occurs at the point 56.60, meaning that in an optimal config-
uration the parallel version was 56 times faster than the sequential
version.

Using bigger local maps means that more threads are needed for
each local map in the several steps of the technique. The fact that
the multiprocessor offers several running threads at the same time
implies in a better use of the resources and in good improvements
in performance.

On the other hand, for several reasons, with smaller local maps the
speed up is not so high. On the side of the parallel version, a small
local map does not make a good use of the resources of each mul-
tiprocessor. And on the side of the sequential version, a small local
map may fit better in the processor cache. Moreover, the proces-
sor clock is three times higher than the graphics processor clock. If
we combine all these factors in the same test, the speed up in the
parallel version is minimized.

In addition, according to the nVIDIA Cuda Programming
Guide [NVIDIA. 2009], the graphics processor cannot handle all
the data in a parallel way. The division of the work in blocks of
threads lets the graphics processor scheduler run some blocks of
thread while others wait for execution. Because of this, the compu-
tation of 256 local maps in a parallel way does not give a speed up
of 256 times.

To explain what is the cause of the graphics peaks, the nVIDIA
Cuda Programming Guide says that each algorithm implemented



with Cuda has an optimal point, in which the amount of blocks and
threads uses the most possible number of resources available in the
graphics processor simultaneously. In our technique, this point is
the one with 500 agents in the scene, each one with a local map of
a size of 21× 21.

7 Conclusion

This paper presented a strategy to implement on GPU a BVP Plan-
ner [Dapper et al. 2007] that produces natural steering behaviors
for virtual humans, using a path-planning algorithm based on the
numerical solution of boundary value problems.

The guiding potential of Equation 1 is free of local minima, what
constitutes a great advantage when compared to the traditional po-
tential fields method. Furthermore, the method proposed is for-
mally complete [Connolly and Grupen 1993] and generates smooth
and safe paths that can be directly used in mobile robots or au-
tonomous characters in games. The local information gathered
by agent sensors allows treating dynamic obstacles, such as other
agents navigating in the environment.

We implemented a parallel version of this algorithm using the
nVIDIA R© Cuda [NVIDIA. 2009] language, which allows us to use
the graphics processor avoiding the use of shading languages. The
parallelism was explored, reducing the amount of memory transac-
tions between CPU and GPU.

Our result shown that the GPU implementation improves up to 56
times the sequential CPU version, allowing the real-time use of this
technique even in scenarios with a huge number of autonomous
characters, which is a common situation often found in games.

As future work, we suggest the exploration of ADI Method [Peace-
man D. W. 1995], obtaining a faster convergence of the relaxation
process. The ADI Method is suitable to be used on parallel architec-
tures and to explore the use of other shading languages. It would be
interesting to compare the possible improvements in performance
using other languages.

We have also proposed an extension of this technique to manage
the movement of groups of agents in dynamic environments [Sil-
veira et al. 2008]. We intend to implement a parallel version of this
extension and release the project over an open source license.
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